Guruberbahasa.com - Soal Fungsi Kuadrat
1. Grafik fungsi y = x2 – 4x – 8 memotong sumbu y di titik:
a. (-8, 0)
b. (-4, 0)
c. (0, 8)
d. (0, -8)
e. (-4, 8)
Jawab. d. (0, -8)
Pembahasan:
Diketahui y = x2 – 4x – 8
Titik potong dengan sumbu y diperoleh jika x = 0.
y = x2 – 4x – 8
= 0 – 0 – 8
= -8
Jadi grafik fungsi y = x2 – 4x – 8 memotong sumbu y di titik (0, -8)
2. Pembuat nol dari fungsi kuadrat y = x2 – x – 12 adalah:
a. x = -1 atau x = 2
b. x = -3 atau x = -4
c. x = 1 atau x = -2
d. x = 1 atau x = 2
e. x = -3 atau x = 4
jawab: e. x = -3 atau x = 4
Pembahasan:
Diketahui y = x2 – x – 12
Pembuat nol fungsi kuadrat diperoleh jika y = 0
x2 – x – 12 = 0
(x + 3)(x – 4) = 0
x = -3 x = 4
3. Persamaan sumbu simetri dari parabola y = 8 – 2x – x2 adalah:
a. x = 4
b. x = 2
c. x = 1
d. x = -1
e. x = -2
Jawab: d. x = -1
Pembahasan:
y = 8 – 2x – x2 → a = -1, -2, c = 8
Persamaan sumbu simetri:
4. Jika fungsi y = ax2 + 4x + 3a mempunyai nilai maksimum -11, maka a2 – a adalah:
a. 1/6
b. 1/3
c. 3
d. 10
e. 20
Jawab: e. 20
Pembahasan :
Nilai maksimum y = ax2 + 4x + 3a adalah
-11 =
-11 =
3a2 – 4 = -11a
3a2 + 11 a = 0
(3a – 1)(a + 4) = 0
A = 1/3 a = -4
Karena y mempunyai nilai maksimum maka a < 0, sehingga nilai a yang memenuhi adalah -4. Jadi a2 – a = (-4)2 – (-4) = 20
6. titik balik fungsi f(x) = x2 – 4x – 21 adalah:
a. (-3, 27)
b. (2, -25)
c. (0, -21)
d. (1, -24)
e. (-2, 25)
Jawab: e. (-2, 25)
Pembahasan:
Persamaan sumbu simetri:
Jadi titik balik (2, -25)
7. Koordinat titik balik grafik fungsi dengan rumus f(x) = 3 – 2x – x2 adalah:
a. (-2, 3)
b. (-1, 4)
c. (-1, 6)
d. (1, -4)
e. (1, 4)
Jawab: b. (-1, 4)
Pembahasan:
f(x) = 3 – 2x – x2 → a = -1, b = -2, c = 3
f(-1) = 3 – 2(-1) – (-1)2
= 3 + 2 – 1 = 4
Jadi titik baliknya adalah (-1, 4).
8. Grafik fungsi kuadrat yang persamaanya y = ax2 – 5x – 3 memotong sumbu x. salah satu titik potongnya adalah (½. 0). Nilai a sama dengan:
a. -32
b. -2
c. 2
d. 11
e. 22
Jawab: c. 2
Pembahasan:
Melalui titik (½. 0), maka:
y = ax2 – 5x – 3
0 =
a = 2
Sumber: http://banksoal.sridianti.com
-
1. Grafik fungsi y = x2 – 4x – 8 memotong sumbu y di titik:
a. (-8, 0)
b. (-4, 0)
c. (0, 8)
d. (0, -8)
e. (-4, 8)
Jawab. d. (0, -8)
Pembahasan:
Diketahui y = x2 – 4x – 8
Titik potong dengan sumbu y diperoleh jika x = 0.
y = x2 – 4x – 8
= 0 – 0 – 8
= -8
Jadi grafik fungsi y = x2 – 4x – 8 memotong sumbu y di titik (0, -8)
2. Pembuat nol dari fungsi kuadrat y = x2 – x – 12 adalah:
a. x = -1 atau x = 2
b. x = -3 atau x = -4
c. x = 1 atau x = -2
d. x = 1 atau x = 2
e. x = -3 atau x = 4
jawab: e. x = -3 atau x = 4
Pembahasan:
Diketahui y = x2 – x – 12
Pembuat nol fungsi kuadrat diperoleh jika y = 0
x2 – x – 12 = 0
(x + 3)(x – 4) = 0
x = -3 x = 4
3. Persamaan sumbu simetri dari parabola y = 8 – 2x – x2 adalah:
a. x = 4
b. x = 2
c. x = 1
d. x = -1
e. x = -2
Jawab: d. x = -1
Pembahasan:
y = 8 – 2x – x2 → a = -1, -2, c = 8
Persamaan sumbu simetri:
4. Jika fungsi y = ax2 + 4x + 3a mempunyai nilai maksimum -11, maka a2 – a adalah:
a. 1/6
b. 1/3
c. 3
d. 10
e. 20
Jawab: e. 20
Pembahasan :
Nilai maksimum y = ax2 + 4x + 3a adalah
-11 =
-11 =
3a2 – 4 = -11a
3a2 + 11 a = 0
(3a – 1)(a + 4) = 0
A = 1/3 a = -4
Karena y mempunyai nilai maksimum maka a < 0, sehingga nilai a yang memenuhi adalah -4. Jadi a2 – a = (-4)2 – (-4) = 20
6. titik balik fungsi f(x) = x2 – 4x – 21 adalah:
a. (-3, 27)
b. (2, -25)
c. (0, -21)
d. (1, -24)
e. (-2, 25)
Jawab: e. (-2, 25)
Pembahasan:
Persamaan sumbu simetri:
Jadi titik balik (2, -25)
7. Koordinat titik balik grafik fungsi dengan rumus f(x) = 3 – 2x – x2 adalah:
a. (-2, 3)
b. (-1, 4)
c. (-1, 6)
d. (1, -4)
e. (1, 4)
Jawab: b. (-1, 4)
Pembahasan:
f(x) = 3 – 2x – x2 → a = -1, b = -2, c = 3
f(-1) = 3 – 2(-1) – (-1)2
= 3 + 2 – 1 = 4
Jadi titik baliknya adalah (-1, 4).
8. Grafik fungsi kuadrat yang persamaanya y = ax2 – 5x – 3 memotong sumbu x. salah satu titik potongnya adalah (½. 0). Nilai a sama dengan:
a. -32
b. -2
c. 2
d. 11
e. 22
Jawab: c. 2
Pembahasan:
Melalui titik (½. 0), maka:
y = ax2 – 5x – 3
0 =
a = 2
Sumber: http://banksoal.sridianti.com
0 Response to "Soal-Soal Tentang Fungsi Kuadrat Serta Pembahasannya"
Post a Comment
KOMENTARMU